
API Client Generator for Python
Documentation

Release latest

Luke Sneeringer

Sep 29, 2020

Contents

1 Getting Started 3
1.1 Docker Image . 3
1.2 Local Installation . 6
1.3 Bazel Build . 10

2 How Code Generation Works 13
2.1 The protoc contract . 13
2.2 Entry Point . 13
2.3 Parse . 14
2.4 Translation . 14
2.5 Exit Point . 14

3 Templates 15
3.1 Jinja . 15
3.2 Locating Templates . 15
3.3 Context (Variables) . 16
3.4 Filters . 16
3.5 Custom templates . 16

4 Features and Limitations 19

5 Reference 21
5.1 generator . 21
5.2 schema . 22
5.3 utils . 32

Python Module Index 33

Index 35

i

ii

API Client Generator for Python Documentation, Release latest

A generator for protocol buffer described APIs for and in Python 3.

This tool is a client library generator that implements the client library generators specification.

It accepts an API specified in protocol buffers and generates a client library, which can be used to interact with that
API. It is implemented as a plugin to protoc, the protocol buffer compiler.

Contents 1

https://aip.dev/client-libraries
https://developers.google.com/protocol-buffers/

API Client Generator for Python Documentation, Release latest

2 Contents

CHAPTER 1

Getting Started

This code generator is implemented as a plugin to protoc, the compiler for protocol buffers, and will run in any
environment that Python 3.6+ and protocol buffers do.

Because dependency management and such can be a significant undertaking, we offer a Docker image and interface
which requires you only to have Docker installed and provide the protos for your API.

It is also possible to install the tool locally and run it through protoc, and this approach is fully supported.

Note: The Docker approach is recommended for users new to this ecosystem, or those which do not have a robust
Python environment available.

1.1 Docker Image

If you are just getting started with code generation for protobuf-based APIs, or if you do not have a robust Python
environment already available, we recommend using our Docker image to build client libraries.

However, this tool offers first-class support for local execution using protoc: Local Installation. It is still reasonably
easy, but initial setup will take a bit longer.

Note: If you are interested in contributing, using a local installation is recommended.

1.1.1 Installing

Docker

In order to use a Docker image, you must have Docker installed. Docker is a container management service, and is
available on Linux, Mac, and Windows (although most of these instructions will be biased toward Linux and Mac).

3

https://developers.google.com/protocol-buffers/
https://docker.com/
https://docker.com/

API Client Generator for Python Documentation, Release latest

Install Docker according to their installation instructions.

Note: This image requires Docker 17.05 or later.

Pull the Docker Image

Once Docker is installed, simply pull the Docker image for this tool:

$ docker pull gcr.io/gapic-images/gapic-generator-python:latest

1.1.2 Usage

To use this plugin, you will need an API which is specified using protocol buffers. Additionally, this plugin makes
some assumptions at the margins according to Google API design conventions as described in AIPs, so following
those conventions is recommended.

Example

If you want to experiment with an already-existing API, one example is available. (Reminder that this is still considered
experimental, so apologies for this part being a bit strange.)

You need to clone the googleapis repository from GitHub:

$ git clone https://github.com/googleapis/googleapis.git

It is possible to generate libraries for most (possibly all) APIs described here. The API we use as an example is the
Google Cloud Vision API, available in the google/cloud/vision/v1/ subdirectory. This will be used for the
remainder of the examples on this page.

Compiling an API

Note: If you are running code generation repeatedly, executing the long docker run command may be cum-
bersome. While you should ensure you understand this section, a shortcut script is available to make iterative work
easier.

Compile the API into a client library by invoking the Docker image.

It is worth noting that the image must interact with the host machine (your local machine) for two things: reading in
the protos you wish to compile, and writing the output. This means that when you run the image, two mount points
are required in order for anything useful to happen.

In particular, the input protos are expected to be mounted into /in/, and the desired output location is expected to be
mounted into /out/. The output directory must also be writable.

Note: The /in/ and /out/ directories inside the image are hard-coded; they can not be altered where they appear
in the command below.

Docker requires the output directory to pre-exist; create a directory where you want the generated code to go:

4 Chapter 1. Getting Started

https://docs.docker.com/install/
https://aip.dev
https://github.com/googleapis/googleapis
https://cloud.google.com/vision/

API Client Generator for Python Documentation, Release latest

$ mkdir dest/

Perform the actual code generation step with docker run:

This is assumed to be run from the `googleapis` project root.
$ docker run \

--mount type=bind,source=$(pwd)/google/cloud/vision/v1/,destination=/in/google/
→˓cloud/vision/v1/,readonly \
--mount type=bind,source=$(pwd)/dest/,destination=/out/ \
--rm \
--user $UID \
gcr.io/gapic-images/gapic-generator-python

Warning: protoc is very picky about paths, and the exact construction here matters a lot. The source is
google/cloud/vision/v1/, and then the destination is that full directory path after the /in/ root; there-
fore: /in/google/cloud/vision/v1/.

This matters because of how proto imports are resolved. The import statement imports a file, relative to a base
directory or set of base directories, called the proto_path. This is assumed (and hard-coded) to /in/ in the
Docker image, and so any directory structure present in the imports of the proto files must be preserved beneath
this for compilation to succeed.

Generating Samples

In addition to generating client libraries, the generator can also create standalone executable code samples.

The user can specify individual sample config files or can pass paths to directories that contain sample configs. Direc-
tories are searched recursively, and any file that is not a sample config is ignored.

A full description of the sample config, generated manifest, and generated samples is outside the scope of this docu-
mentation. We will provide links to such documentation when it is ready.

Samples and manifests are always generated in a ‘samples’ subdir of the destination directory.

Multiple sample paths or directories can be passed simultaneously by duplicating
the 'samples' option.
If no 'samples' option is passed, the generator does not generate a manifest.
$ docker run \

--mount type=bind,source=$(pwd)/path/to/proto/dir,destination=/in/path/to/proto,
→˓readonly \
--mount type=bind,source=$(pwd)/dest/,destination=/out/ \
--rm \
--user $UID \
gcr.io/gapic-images/gapic-generator-python \
--samples path/to/sample/config.yaml \
--samples path/to/sample/dir/

1.1.3 Verifying the Library

Once you have compiled a client library, whether using a Docker image, local installation or bazel, it is time for the
fun part: actually running it!

Create a virtual environment for the library:

1.1. Docker Image 5

API Client Generator for Python Documentation, Release latest

$ virtualenv ~/.local/client-lib --python=`which python3.7`
$ source ~/.local/client-lib/bin/activate

Next, install the library:

$ cd dest/
$ pip install --editable .

Now it is time to play with it! Here is a test script:

This is the client library generated by this plugin.
from google.cloud import vision

Instantiate the client.
#
If you need to manually specify credentials, do so here.
More info: https://cloud.google.com/docs/authentication/getting-started
#
If you wish, you can send `transport='grpc'` or `transport='http'`
to change which underlying transport layer is being used.
ia = vision.ImageAnnotatorClient()

Send the request to the server and get the response.
response = ia.batch_annotate_images({

'requests': [{
'features': [{

'type': vision.Feature.Type.LABEL_DETECTION,
}],
'image': {'source': {

'image_uri': 'https://images.pexels.com/photos/67636'
'/rose-blue-flower-rose-blooms-67636.jpeg',

}},
}],

})
print(response)

1.2 Local Installation

If you are just getting started with code generation for protobuf-based APIs, or if you do not have a robust Python
environment already available, it is probably easier to get started using Docker: Docker Image

However, this tool offers first-class support for local execution using protoc. It is still reasonably easy, but initial
setup will take a bit longer.

Note: If you are interested in contributing, setup according to these steps is recommended.

1.2.1 Installing

protoc

This tool is implemented as a plugin to the protocol buffers compiler, so in order to use it, you will need to have the
protoc command available.

6 Chapter 1. Getting Started

https://developers.google.com/protocol-buffers/

API Client Generator for Python Documentation, Release latest

The release page on GitHub contains the download you need.

Note: You may notice both packages that designate languages (e.g. protobuf-python-X.Y.Z.tar.gz) as
well as packages that designate architectures (e.g. protoc-X.Y.Z-linux-x86_64.zip). You want the one that
designates an architecture; your goal here is to have a CLI command.

It is likely preferable to install protoc somewhere on your shell’s path, but this is not a strict requirement (as you
will be invoking it directly). protoc is also quirky about how it handles well-known protos; you probably also want
to copy them into /usr/local/include

To ensure it is installed propertly:

$ protoc --version
libprotoc 3.6.0

pandoc

This generator relies on pandoc to convert from Markdown (the lingua franca for documentation in protocol buffers)
into ReStructured Text (the lingua franca for documentation in Python).

Install this using an appropriate mechanism for your operating system. Multiple installation paths are documented on
the pandoc installation page.

API Generator for Python

This package is provided as a standard Python library, and can be installed the usual ways. It fundamentally provides a
CLI command, protoc-gen-python_gapic, (yes, the mismatch of kebob-case and snake_case is weird,
sorry), so you will want to install using a mechanism that is conducive to making CLI commands available.

Additionally, this program currently only runs against Python 3.6 or Python 3.7, so you will need that installed. (Most
Linux distributions ship with earlier versions.) Use pyenv to get Python 3.7 installed in a friendly way.

As for this library itself, the recommended installation approach is pipsi.

Due to its experimental state, this tool is not published to a
package manager; you should clone it.
(You can pip install it from GitHub, not not if you want to tinker.)
git clone https://github.com/googleapis/gapic-generator-python.git
cd gapic-generator-python/

Install the tool. This will handle the virtualenv for you, and
make an appropriately-aliased executable.
The `--editable` flag is only necessary if you want to work on the
tool (as opposed to just use it).
pipsi install --editable --python=`which python3.7` .

To ensure the tool is installed properly:

$ which protoc-gen-python_gapic
/path/to/protoc-gen-python_gapic

1.2. Local Installation 7

https://github.com/google/protobuf/releases
https://pandoc.org/
https://pandoc.org/installing.html
https://github.com/pyenv/pyenv
https://github.com/mitsuhiko/pipsi

API Client Generator for Python Documentation, Release latest

1.2.2 Usage

To use this plugin, you will need an API which is specified using protocol buffers. Additionally, this plugin makes
some assumptions at the margins according to Google API design conventions as described in AIPs, so following
those conventions is recommended.

Example

If you want to experiment with an already-existing API, one example is available. (Reminder that this is still considered
experimental, so apologies for this part being a bit strange.)

You need to clone the googleapis repository from GitHub:

$ git clone https://github.com/googleapis/googleapis.git

It is possible to generate libraries for most (possibly all) APIs described here. The API we use as an example is the
Google Cloud Vision API, available in the google/cloud/vision/v1/ subdirectory. This will be used for the
remainder of the examples on this page.

You will also need the common protos, which define certain client-specific annotations. These are in the api-common-
protos repository. Clone this from GitHub also:

$ git clone https://github.com/googleapis/api-common-protos.git

Compiling an API

Compile the API into a client library by invoking protoc directly. This plugin is invoked under the hood via. the
--python_gapic_out switch.

This is assumed to be in the `googleapis` project root, and we also
assume that api-common-protos is next to it.
$ protoc google/cloud/vision/v1/*.proto \

--proto_path=../api-common-protos/ --proto_path=. \
--python_gapic_out=/dest/

Note: A reminder about paths.

Remember that protoc is particular about paths. It requires all paths where it expects to find protos, and order
matters. In this case, the common protos must come first, and then the path to the API being built.

Generating Samples

In addition to generating client libraries, the generator can also create standalone executable code samples.

The user can specify individual sample config files or can pass paths to directories that contain sample configs. Direc-
tories are searched recursively, and any file that is not a sample config is ignored.

A full description of the sample config, generated manifest, and generated samples is outside the scope of this docu-
mentation. We will provide links to such documentation when it is ready.

Samples and manifests are always generated in a ‘samples’ subdir of the destination directory.

8 Chapter 1. Getting Started

https://aip.dev
https://github.com/googleapis/googleapis
https://cloud.google.com/vision/
https://github.com/googleapis/api-common-protos/tree/input-contract
https://github.com/googleapis/api-common-protos/tree/input-contract

API Client Generator for Python Documentation, Release latest

Multiple sample paths or directories can be passed simultaneously by duplicating
the 'samples' option. Options are comma delimited.
If no 'samples' option is passed, the generator does not generate a manifest.
$ protoc path/to/api/protos/*.proto \

--proto_path=../api-common-protos/ \
--proto_path=. \
--python_gapic_opt="samples=sample_config.yaml,samples=sample_dir/" \
--python_gapic_out=/dest/

1.2.3 Verifying the Library

Once you have compiled a client library, whether using a Docker image, local installation or bazel, it is time for the
fun part: actually running it!

Create a virtual environment for the library:

$ virtualenv ~/.local/client-lib --python=`which python3.7`
$ source ~/.local/client-lib/bin/activate

Next, install the library:

$ cd dest/
$ pip install --editable .

Now it is time to play with it! Here is a test script:

This is the client library generated by this plugin.
from google.cloud import vision

Instantiate the client.
#
If you need to manually specify credentials, do so here.
More info: https://cloud.google.com/docs/authentication/getting-started
#
If you wish, you can send `transport='grpc'` or `transport='http'`
to change which underlying transport layer is being used.
ia = vision.ImageAnnotatorClient()

Send the request to the server and get the response.
response = ia.batch_annotate_images({

'requests': [{
'features': [{

'type': vision.Feature.Type.LABEL_DETECTION,
}],
'image': {'source': {

'image_uri': 'https://images.pexels.com/photos/67636'
'/rose-blue-flower-rose-blooms-67636.jpeg',

}},
}],

})
print(response)

1.2. Local Installation 9

API Client Generator for Python Documentation, Release latest

1.3 Bazel Build

This generator can be called from Bazel, which is a recommended way of using it inside a continuous integration build
or any other automated pipeline.

1.3.1 Installing

Bazel

You will need Bazel version 3.0+. Please check the Bazel website for the available installation options.

Bazel is distributed in a form of a single binary, so one of the easiest ways to install it is simply downloading the binary
and making it executable:

curl -L https://github.com/bazelbuild/bazel/releases/download/3.2.0/bazel-3.2.0-linux-
→˓x86_64 -o bazel
chmod +x bazel

Python and Dependencies

Bazel build is mostly hermetic, with a few exceptions for Python generator. Specifically it expects Python 3.7+ with
the python dev packages to be installed.

On Linux, to install those, simply run:

sudo apt-get install \
python-dev \
python3-dev

1.3.2 Usage

To use this plugin, you will need an API which is specified using protocol buffers. Additionally, this plugin makes
some assumptions at the margins according to Google API design conventions as described in AIPs, so following
those conventions is recommended.

Example

To generate a client library with Bazel you will need a Bazel workspace. An example of such workspace would be
googleapis. It is already integrated with this this generator in its WORKSPACE file.

You need to clone the googleapis repository from GitHub:

$ git clone https://github.com/googleapis/googleapis.git

The API we use as an example is the Document AI API, available in the google/cloud/documentai/
v1beta2/ subdirectory.

Creating the Targets

To build somethign with bazel you need to create the corresponding tagets in your BUIDL.bazel file. You can use
the Python section of the Document AI BUIDL.bazel file as an example:

10 Chapter 1. Getting Started

https://www.bazel.build/
https://docs.bazel.build/versions/3.2.0/install-ubuntu.html
https://aip.dev
https://github.com/googleapis/googleapis
https://github.com/googleapis/googleapis/blob/master/WORKSPACE#L220
https://github.com/googleapis/googleapis
..https://cloud.google.com/solutions/document-ai
https://github.com/googleapis/googleapis/blob/master/google/cloud/documentai/v1beta2/BUILD.bazel

API Client Generator for Python Documentation, Release latest

load(
"@gapic_generator_python//rules_python_gapic:py_gapic.bzl",
"py_gapic_library"

)

load(
"@gapic_generator_python//rules_python_gapic:py_gapic_pkg.bzl",
"py_gapic_assembly_pkg"

)

py_gapic_library(
name = "documentai_py_gapic",
srcs = [":documentai_proto"],

)

py_gapic_assembly_pkg(
name = "documentai-v1beta2-py",
deps = [

":documentai_py_gapic",
],

)

Compiling an API

To generate the client library simply run the bazel command from the repository root, specifying the
py_gapic_assembly_pkg target name as the argument:

bazel build //google/cloud/documentai/v1beta2:documentai-v1beta2-py

This will generate a tar.gz archive with the generated library packaged in it. To unpack it in dest location simply run
the following command from the Bazel workspace root:

tar -xzpf bazel-bin/google/cloud/documentai/v1beta2/documentai-v1beta2-py.tar.gz -C
→˓dest

1.3.3 Verifying the Library

Once you have compiled a client library, whether using a Docker image, local installation or bazel, it is time for the
fun part: actually running it!

Create a virtual environment for the library:

$ virtualenv ~/.local/client-lib --python=`which python3.7`
$ source ~/.local/client-lib/bin/activate

Next, install the library:

$ cd dest/
$ pip install --editable .

Now it is time to play with it! Here is a test script:

This is the client library generated by this plugin.
from google.cloud import vision

(continues on next page)

1.3. Bazel Build 11

API Client Generator for Python Documentation, Release latest

(continued from previous page)

Instantiate the client.
#
If you need to manually specify credentials, do so here.
More info: https://cloud.google.com/docs/authentication/getting-started
#
If you wish, you can send `transport='grpc'` or `transport='http'`
to change which underlying transport layer is being used.
ia = vision.ImageAnnotatorClient()

Send the request to the server and get the response.
response = ia.batch_annotate_images({

'requests': [{
'features': [{

'type': vision.Feature.Type.LABEL_DETECTION,
}],
'image': {'source': {

'image_uri': 'https://images.pexels.com/photos/67636'
'/rose-blue-flower-rose-blooms-67636.jpeg',

}},
}],

})
print(response)

12 Chapter 1. Getting Started

CHAPTER 2

How Code Generation Works

This page gives a brief decription of how this code generator works. It is not intended to be the final treatise on how
to write any code generator. It is meant to be a reference for those who wish to contribute to this effort, or to use it as
a reference implementation.

There are two steps: a parse step which essentially involves reorganizing data to make it more friendly to templates,
and a translation step which sends information about the API to templates, which ultimately write the library.

2.1 The protoc contract

This code generator is written as a protoc plugin, which operates on a defined contract. The contract is straightfor-
ward: a plugin must accept a CodeGeneratorRequest (essentially a sequence of FileDescriptor objects)
and output a CodeGeneratorResponse.

If you are unfamiliar with protoc plugins, welcome! That last paragraph likely sounded not as straightforward
as claimed. It may be useful to read plugin.proto and descriptor.proto before continuing on. The former describes
the contract with plugins (such as this one) and is relatively easy to digest, the latter describes protocol buffer files
themselves and is rather dense. The key point to grasp is that each .proto file compiles into one of these proto
messages (called descriptors), and this plugin’s job is to parse those descriptors.

That said, you should not need to know the ins and outs of the protoc contract model to be able to follow what this
library is doing.

2.2 Entry Point

The entry point to this tool is gapic/cli/generate.py. The function in this module is responsible for accepting
CLI input, building the internal API schema, and then rendering templates and using them to build a response object.

13

https://github.com/google/protobuf/blob/master/src/google/protobuf/compiler/plugin.proto
https://github.com/google/protobuf/blob/master/src/google/protobuf/descriptor.proto

API Client Generator for Python Documentation, Release latest

2.3 Parse

As mentioned, this plugin is divided into two steps. The first step is parsing. The guts of this is handled by the API
object, which is this plugin’s internal representation of the full API client.

In particular, this class has a build() method which accepts a sequence of FileDescriptor objects (remember,
this is protoc’s internal representation of each proto file). That method iterates over each file and creates a Proto
object for each one.

Note: An API object will not only be given the descriptors for the files you specify, but also all of their dependencies.
protoc is smart enough to de-duplicate and send everything in the correct order.

The API object’s primary purpose is to make sure all the information from the proto files is in one place, and reason-
ably accessible by Jinja templates (which by design are not allowed to call arbitrary Python code). Mostly, it tries to
avoid creating an entirely duplicate structure, and simply wraps the descriptor representations. However, some data
needs to be moved around to get it into a structure useful for templates (in particular, descriptors have an unfriendly
approach to sorting protobuf comments, and this parsing step places these back alongside their referent objects).

The internal data model does use wrapper classes around most of the descriptors, such as Service and
MessageType. These consistently contain their original descriptor (which is always spelled with a _pb suffix,
e.g. the Service wrapper class has a service_pb instance variable). These exist to handle bringing along addi-
tional relevant data (such as the protobuf comments as mentioned above) and handling resolution of references (for
example, allowing a Method to reference its input and output types, rather than just the strings).

These wrapper classes follow a consistent structure:

• They define a __getattr__ method that defaults to the wrapped desctiptor unless the wrapper itself provides
something, making the wrappers themselves transparent to templates.

• They provide a meta attribute with metadata (package information and documentation). That means templates
can consistently access the name for the module where an object can be found, or an object’s documentation, in
predictable and consistent places (thing.meta.doc, for example, prints the comments for thing).

2.4 Translation

The translation step follows a straightfoward process to write the contents of client library files.

This works by reading in and rendering Jinja templates into a string. The file path of the Jinja template is used to
determine the filename in the resulting client library.

More details on authoring templates is discussed on the Templates page.

2.5 Exit Point

Once the individual strings corresponding to each file to be generated is collected into memory, these are pieced
together into a CodeGeneratorResponse object, which is serialized and written to stdout.

14 Chapter 2. How Code Generation Works

http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/

CHAPTER 3

Templates

This page provides a description of templates: how to write them, what variables they receive, and so on and so forth.

In many cases, it should be possible to provide alternative Python libraries based on protocol buffers by only editing
templates (or authoring new ones), with no requirement to alter the primary codebase itself.

3.1 Jinja

All templates are implemented in Jinja, Armin Ronacher’s excellent templating library for Python. This document
assumes that you are already familiar with the basics of writing Jinja templates, and does not seek to cover that here.

3.2 Locating Templates

Templates are included in output simply on the basis that they exist. There is no master list of templates; it is
assumed that every template should be rendered (unless its name begins with a single underscore).

Note: Files beginning with an underscore (_) are not rendered by default. This is to allow them to be used with
extends and include. However, __init__.py.j2 is rendered.

The name of the output file is based on the name of the template, with the following string replacements applied:

• The .j2 suffix is removed.

• $namespace is replaced with the namespace specified in the client, converted to appropriate Python module
case. If there is no namespace, this segment is dropped. If the namespace has more than one element, this is
expanded out in the directory structure. (For example, a namespace of ['Acme', 'Manufacturing']
will translate into acme/manufacturing/ directories.)

• $name is replaced with the client name. This is expected to be present.

15

http://jinja.pocoo.org/docs/2.10/

API Client Generator for Python Documentation, Release latest

• $version is replaced with the client version (the version of the API). If there is no specified version, this is
dropped.

• $service is replaced with the service name, converted to appropriate Python module case. There may be
more than one service in an API; read on for more about this.

Note: $name_$version is a special case: It is replaced with the client name, followed by the version. However,
if there is no version, both it and the underscore are dropped.

3.3 Context (Variables)

Every template receives one variable, spelled api. It is the API object that was pieced together in the parsing step.

Most APIs also receive one additional variable depending on what piece of the API structure is being iterated over:

• Services. APIs can (and often do) have more than one service. Therefore, templates with $service in their
name are rendered once per service, with the $service string changed to the name of the service itself (in
snake case, because this is Python). These templates receive a service variable (an instance of Service)
corresponding to the service currently being iterated over.

• Protos. Similarly, APIs can (and often do) have more than one proto file containing messages. Therefore, tem-
plates with $proto in their name are rendered once per proto, with the $proto``string changed to
the name of the proto file. These templates receive a ``proto variable (an in-
stance of Proto) corresponding to the proto currently being iterated over.

3.4 Filters

Additionally, templates receive a limited number of filters useful for writing properly formatted templates.

These are:

• rst (rst()): Converts a string to ReStructured Text. If the string appears not to be formatted (contains no
obvious Markdown syntax characters), then this method forwards to wrap.

• sort_lines (sort_lines()): Sorts lines of text, optionally de-duplicating if there are duplicates. This
works best with the Jinja {% filter sort_lines %} style syntax.

• snake_case (to_snake_case()): Converts a string in any sane case system to snake case.

• wrap (wrap()): Wraps arbitrary text. Keyword arguments on this method such as offset and indent
should make it relatively easy to take an arbitrary string and make it wrap to 79 characters appropriately.

3.5 Custom templates

It is possible to provide your own templates.

To do so, you need a folder with Jinja templates. Each template must have a .j2 extension (which will be stripped by
this software when writing the final file; see above). Additionally, when you provide your own templates, the filename
substitutions described above still occur.

16 Chapter 3. Templates

API Client Generator for Python Documentation, Release latest

3.5.1 Building Locally

To specify templates, you need to provide a --python_gapic_opt argument to protoc, with a key-value pair
that looks like:

–python_gapic_opt=”python-gapic-templates=/path/to/templates”

It is also possible to specify more than one directory for templates (in which case they are searched in order); to do
this, provide the argument multiple times:

–python_gapic_opt=”python-gapic-templates=/path/to/templates” –python_gapic_opt=”python-gapic-
templates=/other/path”

If you provide your own templates, the default templates are no longer consulted. If you want to add your own
templates on top of the default ones provided by this library, use the special DEFAULT string:

–python_gapic_opt=”python-gapic-templates=/path/to/templates” –python_gapic_opt=”python-gapic-
templates=DEFAULT”

3.5.2 Building with Docker

When building with Docker, you instead provide the --python-gapic-templates argument after the docker
run command:

$ docker run \
--mount type=bind,source=google/cloud/vision/v1/,destination=/in/google/cloud/

→˓vision/v1/,readonly \
--mount type=bind,source=dest/,destination=/out/ \
--mount type=bind,source=/path/to/templates,destination=/templates/,readonly \
--rm \
--user $UID \
gcr.io/gapic-images/gapic-generator-python \
--python-gapic-templates /templates/ \
--python-gapic-templates DEFAULT

As before, to provide more than one location for templates, specify the argument more than once.

Warning: If you are using custom templates with Docker, be sure to also mount the directory with the templates
into the Docker image; otherwise the generator will not be able to read that directory. When specifying the
--python-gapic-templates argument, it is the path inside the Docker image that matters!

3.5. Custom templates 17

API Client Generator for Python Documentation, Release latest

18 Chapter 3. Templates

CHAPTER 4

Features and Limitations

Nice things this client does:

• Implemented in pure Python, with language-idiomatic templating tools.

• It supports multiple transports: both gRPC and protobuf over HTTP/1.1. A JSON-based transport would be easy
to add.

• It uses a lighter-weight configuration, specified in the protocol buffer itself.

As this is experimental work, please note the following limitations:

• The output only works on Python 3.5 and above.

• The configuration annotations are experimental and provided in an awkward location.

• gRPC must be installed even if you are not using it (this is due to some minor issues in api-core).

• No support for samples yet.

19

https://github.com/googleapis/api-common-protos/blob/input-contract/google/api/

API Client Generator for Python Documentation, Release latest

20 Chapter 4. Features and Limitations

CHAPTER 5

Reference

Below is a reference for the major classes and functions within this module.

It is split into three main sections:

• The schemamodule contains data classes that make up the internal representation for an API. The API contains
thin wrappers around protocol buffer descriptors; the goal of the wrappers is to mostly expose the underlying
descriptors, but make some of the more complicated access and references easier in templates.

• The generator module contains most of the logic. Its Generator class is the thing that takes a request
from protoc and gives it back a response.

• The utils module contains utility functions needed elsewhere, including some functions that are sent to all
templates as Jinja filters.

Note: Templates are housed in the templates directory, which is a sibling to the modules listed above.

5.1 generator

The generator module contains the code generation logic.

The core of this work is around the Generator class, which divides up the processing of individual templates.

class gapic.generator.generator.Generator(opts: gapic.generator.options.Options)
A protoc code generator for client libraries.

This class provides an interface for getting a CodeGeneratorResponse for an API schema object (which
it does through rendering templates).

Parameters

• opts (Options) – An options instance.

• templates (str) – Optional. Path to the templates to be rendered. If this is not provided,
the templates included with this application are used.

21

https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

get_response(api_schema: gapic.schema.api.API, opts: gapic.generator.options.Options) →
google.protobuf.compiler.plugin_pb2.CodeGeneratorResponse

Return a CodeGeneratorResponse for this library.

This is a complete response to be written to (usually) stdout, and thus read by protoc.

Parameters

• api_schema (API) – An API schema object.

• opts (Options) – An options instance.

Returns A response describing appropriate files and contents. See plugin.proto.

Return type CodeGeneratorResponse

class gapic.generator.options.Options(name: str = ”, namespace: Tuple[str, ...] = (), retry:
Optional[Dict[str, Any]] = None, sample_configs: Tu-
ple[str, ...] = (), templates: Tuple[str, ...] = (’DE-
FAULT’,), lazy_import: bool = False, old_naming:
bool = False, add_iam_methods: bool = False,
PYTHON_GAPIC_PREFIX: str = ’python-gapic-
’, OPT_FLAGS: FrozenSet[str] = frozenset({’retry-
config’, ’old-naming’, ’samples’, ’add-iam-methods’,
’lazy-import’}))

A representation of CLI options passed through protoc.

To maximize interoperability with other languages, we are permissive on unrecognized arguments (essentially,
we throw them away, but we do warn if it looks like it was meant for us).

classmethod build(opt_string: str)→ gapic.generator.options.Options
Build an Options instance based on a protoc opt string.

Parameters opt_string (str) – A string, as passed from the protoc interface (through
--python_gapic_opt). If multiple options are passed, then protoc joins the values
with ,. By convention, we use key=value strings for such options, with an absent value
defaulting to True.

Returns The Options instance.

Return type Options

Raises gapic.samplegen_utils.types.InvalidConfig – If paths to files or direc-
tories that should contain sample configs are passed and no valid sample config is found.

5.2 schema

The schema module provides a normalized API representation.

In general, this module can be considered in three parts: wrappers, metadata, and a roll-up view of an API as a whole.

These three parts are divided into the three component modules.

5.2.1 api

This module contains the “roll-up” class, API. Everything else in the schema module is usually accessed through an
API object.

22 Chapter 5. Reference

https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

class gapic.schema.api.API(naming: gapic.schema.naming.Naming, all_protos: Mapping[str,
gapic.schema.api.Proto], subpackage_view: Tuple[str, ...] = <fac-
tory>)

A representation of a full API.

This represents a top-down view of a complete API, as loaded from a set of protocol buffer files. Once the
descriptors are loaded (see load()), this object contains every message, method, service, and everything else
needed to write a client library.

An instance of this object is made available to every template (as api).

classmethod build(file_descriptors: Sequence[google.protobuf.descriptor_pb2.FileDescriptorProto],
package: str = ”, opts: gapic.generator.options.Options = Options(name=”,
namespace=(), retry=None, sample_configs=(), templates=(’DEFAULT’,),
lazy_import=False, old_naming=False, add_iam_methods=False,
PYTHON_GAPIC_PREFIX=’python-gapic-’, OPT_FLAGS=frozenset({’retry-
config’, ’old-naming’, ’samples’, ’add-iam-methods’, ’lazy-import’})),
prior_protos: Mapping[str, Proto] = None)→ gapic.schema.api.API

Build the internal API schema based on the request.

Parameters

• file_descriptors (Sequence[FileDescriptorProto]) – A list of
FileDescriptorProto objects describing the API.

• package (str) – A protocol buffer package, as a string, for which code should be ex-
plicitly generated (including subpackages). Protos with packages outside this list are con-
sidered imports rather than explicit targets.

• opts (Options) – CLI options passed to the generator.

• prior_protos (Proto) – Previous, already processed protos. These are needed to
look up messages in imported protos. Primarily used for testing.

enums
Return a map of all enums available in the API.

messages
Return a map of all messages available in the API.

protos
Return a map of all protos specific to this API.

This property excludes imported protos that are dependencies of this API but not being directly generated.

services
Return a map of all services available in the API.

subpackages
Return a map of all subpackages, if any.

Each value in the mapping is another API object, but the protos property only shows protos belonging
to the subpackage.

top_level_enums
Return a map of all messages that are NOT nested.

top_level_messages
Return a map of all messages that are NOT nested.

5.2. schema 23

https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

class gapic.schema.api.Proto(file_pb2: google.protobuf.descriptor_pb2.FileDescriptorProto,
services: Mapping[str, gapic.schema.wrappers.Service],
all_messages: Mapping[str, gapic.schema.wrappers.MessageType],
all_enums: Mapping[str, gapic.schema.wrappers.EnumType],
file_to_generate: bool, meta: gapic.schema.metadata.Metadata =
<factory>)

A representation of a particular proto file within an API.

classmethod build(file_descriptor: google.protobuf.descriptor_pb2.FileDescriptorProto,
file_to_generate: bool, naming: gapic.schema.naming.Naming,
opts: gapic.generator.options.Options = Options(name=”, names-
pace=(), retry=None, sample_configs=(), templates=(’DEFAULT’,
), lazy_import=False, old_naming=False, add_iam_methods=False,
PYTHON_GAPIC_PREFIX=’python-gapic-’, OPT_FLAGS=frozenset({’retry-
config’, ’old-naming’, ’samples’, ’add-iam-methods’, ’lazy-import’})),
prior_protos: Mapping[str, Proto] = None, load_services: bool = True) →
gapic.schema.api.Proto

Build and return a Proto instance.

Parameters

• file_descriptor (FileDescriptorProto) – The protocol buffer object de-
scribing the proto file.

• file_to_generate (bool) – Whether this is a file which is to be directly generated,
or a dependency.

• naming (Naming) – The Naming instance associated with the API.

• prior_protos (Proto) – Previous, already processed protos. These are needed to
look up messages in imported protos.

• load_services (bool) – Toggle whether the proto file should load its services. Not
doing so enables a two-pass fix for LRO response and metadata types in certain situations.

disambiguate(string: str)→ str
Return a disambiguated string for the context of this proto.

This is used for avoiding naming collisions. Generally, this method returns the same string, but it returns a
modified version if it will cause a naming collision with messages or fields in this proto.

enums
Return top-level enums on the proto.

messages
Return top-level messages on the proto.

module_name
Return the appropriate module name for this service.

Returns

The module name for this service (which is the service name in snake case).

Return type str

names
Return a set of names used by this proto.

This is used for detecting naming collisions in the module names used for imports.

python_modules
Return a sequence of Python modules, for import.

24 Chapter 5. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

The results of this method are in alphabetical order (by package, then module), and do not contain dupli-
cates.

Returns The package and module pair, intended for use in a from package import
module type of statement.

Return type Sequence[Tuple[str, str]]

5.2.2 metadata

The metadata module defines schema for where data was parsed from. This library places every protocol buffer
descriptor in a wrapper class (see wrappers) before loading it into the API object.

As we iterate over descriptors during the loading process, it is important to know where they came from, because
sometimes protocol buffer types are referenced by fully-qualified string (e.g. method.input_type), and we want
to resolve those references.

Additionally, protocol buffers stores data from the comments in the .proto in a separate structure, and this object
model re-connects the comments with the things they describe for easy access in templates.

class gapic.schema.metadata.Address(name:str=”, module:str=”, module_path:Tuple[int,
...]=<factory>, package:Tuple[str, ...]=<fac-
tory>, parent:Tuple[str, ...]=<factory>,
api_naming:gapic.schema.naming.Naming=<factory>,
collisions:FrozenSet[str]=<factory>)

child(child_name: str, path: Tuple[int, ...]) → gapic.schema.metadata.Address
Return a new child of the current Address.

Parameters child_name (str) – The name of the child node. This address’ name is ap-
pended to parent.

Returns The new address object.

Return type Address

module_alias
Return an appropriate module alias if necessary.

If the module name is not a collision, return empty string.

This method provides a mechanism for resolving naming conflicts, while still providing names that are
fundamentally readable to users (albeit looking auto-generated).

proto
Return the proto selector for this type.

proto_package
Return the proto package for this type.

python_import
Return the Python import for this type.

rel(address: gapic.schema.metadata.Address)→ str
Return an identifier for this type, relative to the given address.

Similar to __str__(), but accepts an address (expected to be the module being written) and truncates
the beginning module if the address matches the identifier’s address. Templates can use this in situations
where otherwise they would refer to themselves.

Parameters address (Address) – The address to compare against.

5.2. schema 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

Returns The appropriate identifier.

Return type str

resolve(selector: str)→ str
Resolve a potentially-relative protobuf selector.

This takes a protobuf selector which may be fully-qualified (e.g. foo.bar.v1.Baz) or may be relative (Baz)
and returns the fully-qualified version.

This method is naive and does not check to see if the message actually exists.

Parameters selector (str) – A protobuf selector, either fully-qualified or relative.

Returns An absolute selector.

Return type str

sphinx
Return the Sphinx identifier for this type.

subpackage
Return the subpackage below the versioned module name, if any.

with_context(*, collisions: FrozenSet[str])→ gapic.schema.metadata.Address
Return a derivative of this address with the provided context.

This method is used to address naming collisions. The returned Address object aliases module names to
avoid naming collisions in the file being written.

class gapic.schema.metadata.FieldIdentifier(ident:gapic.schema.metadata.Address,
repeated:bool)

class gapic.schema.metadata.Metadata(address:gapic.schema.metadata.Address=<factory>,
documentation:google.protobuf.descriptor_pb2.Location=<factory>)

doc
Return the best comment.

This property prefers the leading comment if one is available, and falls back to a trailing comment or a
detached comment otherwise.

If there are no comments, return empty string. (This means a template is always guaranteed to get a string.)

with_context(*, collisions: FrozenSet[str])→ gapic.schema.metadata.Metadata
Return a derivative of this metadata with the provided context.

This method is used to address naming collisions. The returned Address object aliases module names to
avoid naming collisions in the file being written.

5.2.3 naming

class gapic.schema.naming.Naming(name: str = ”, namespace: Tuple[str, ...] = <factory>, ver-
sion: str = ”, product_name: str = ”, proto_package: str =
”)

Naming data for an API.

This class contains the naming nomenclature used for this API within templates.

An concrete child of this object is made available to every template (as api.naming).

26 Chapter 5. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

static build(*file_descriptors, opts: gapic.generator.options.Options = Options(name=”,
namespace=(), retry=None, sample_configs=(), templates=(’DEFAULT’,
), lazy_import=False, old_naming=False, add_iam_methods=False,
PYTHON_GAPIC_PREFIX=’python-gapic-’, OPT_FLAGS=frozenset({’retry-
config’, ’old-naming’, ’samples’, ’add-iam-methods’, ’lazy-import’}))) →
gapic.schema.naming.Naming

Return a full Naming instance based on these file descriptors.

This is pieced together from the proto package names as well as the google.api.metadata file
annotation. This information may be present in one or many files; this method is tolerant as long as the
data does not conflict.

Parameters file_descriptors (Iterable[FileDescriptorProto]) – A list of
file descriptor protos. This list should only include the files actually targeted for output
(not their imports).

Returns

A Naming instance which is provided to templates as part of the API.

Return type Naming

Raises ValueError – If the provided file descriptors contain contradictory information.

long_name
Return an appropriate title-cased long name.

module_name
Return the appropriate Python module name.

module_namespace
Return the appropriate Python module namespace as a tuple.

namespace_packages
Return the appropriate Python namespace packages.

versioned_module_name
Return the versiond module name (e.g. apiname_v1).

If there is no version, this is the same as module_name.

warehouse_package_name
Return the appropriate Python package name for Warehouse.

class gapic.schema.naming.NewNaming(name: str = ”, namespace: Tuple[str, ...] = <factory>,
version: str = ”, product_name: str = ”, proto_package:
str = ”)

versioned_module_name
Return the versiond module name (e.g. apiname_v1).

If there is no version, this is the same as module_name.

class gapic.schema.naming.OldNaming(name: str = ”, namespace: Tuple[str, ...] = <factory>,
version: str = ”, product_name: str = ”, proto_package:
str = ”)

versioned_module_name
Return the versiond module name (e.g. apiname_v1).

If there is no version, this is the same as module_name.

5.2. schema 27

https://docs.python.org/3/library/exceptions.html#ValueError

API Client Generator for Python Documentation, Release latest

5.2.4 wrappers

Module containing wrapper classes around meta-descriptors.

This module contains dataclasses which wrap the descriptor protos defined in google/protobuf/descriptor.proto (which
are descriptors that describe descriptors).

These wrappers exist in order to provide useful helper methods and generally ease access to things in templates (in
particular, documentation, certain aggregate views of things, etc.)

Reading of underlying descriptor properties in templates is okay, a __getattr__ method which consistently routes
in this way is provided. Documentation is consistently at {thing}.meta.doc.

class gapic.schema.wrappers.CommonResource(type_name:str, pattern:str)

class gapic.schema.wrappers.EnumType(enum_pb: google.protobuf.descriptor_pb2.EnumDescriptorProto,
values: List[gapic.schema.wrappers.EnumValueType],
meta: gapic.schema.metadata.Metadata = <factory>)

Description of an enum (defined with the enum keyword.)

ident
Return the identifier data to be used in templates.

with_context(*, collisions: FrozenSet[str])→ gapic.schema.wrappers.EnumType
Return a derivative of this enum with the provided context.

This method is used to address naming collisions. The returned EnumType object aliases module names
to avoid naming collisions in the file being written.

class gapic.schema.wrappers.EnumValueType(enum_value_pb:
google.protobuf.descriptor_pb2.EnumValueDescriptorProto,
meta: gapic.schema.metadata.Metadata =
<factory>)

Description of an enum value.

class gapic.schema.wrappers.Field(field_pb: google.protobuf.descriptor_pb2.FieldDescriptorProto,
message: Optional[MessageType] = None,
enum: Optional[EnumType] = None, meta:
gapic.schema.metadata.Metadata = <factory>, oneof:
Optional[str] = None, MAX_MOCK_DEPTH: int = 20)

Description of a field.

ident
Return the identifier to be used in templates.

inner_mock(stack, depth)
Return a repr of a valid, usually truthy mock value.

is_primitive
Return True if the field is a primitive, False otherwise.

map
Return True if this field is a map, False otherwise.

name
Used to prevent collisions with python keywords

proto_type
Return the proto type constant to be used in templates.

repeated
Return True if this is a repeated field, False otherwise.

28 Chapter 5. Reference

API Client Generator for Python Documentation, Release latest

Returns Whether this field is repeated.

Return type bool

required
Return True if this is a required field, False otherwise.

Returns Whether this field is required.

Return type bool

type
Return the type of this field.

with_context(*, collisions: FrozenSet[str])→ gapic.schema.wrappers.Field
Return a derivative of this field with the provided context.

This method is used to address naming collisions. The returned Field object aliases module names to
avoid naming collisions in the file being written.

class gapic.schema.wrappers.MessageType(message_pb: google.protobuf.descriptor_pb2.DescriptorProto,
fields: Mapping[str,
gapic.schema.wrappers.Field], nested_enums:
Mapping[str, EnumType], nested_messages:
Mapping[str, MessageType], meta:
gapic.schema.metadata.Metadata = <factory>,
oneofs: Optional[Mapping[str, Oneof]] = None)

Description of a message (defined with the message keyword).

get_field(*field_path, collisions: FrozenSet[str] = frozenset())→ gapic.schema.wrappers.Field
Return a field arbitrarily deep in this message’s structure.

This method recursively traverses the message tree to return the requested inner-field.

Traversing through repeated fields is not supported; a repeated field may be specified if and only if it is the
last field in the path.

Parameters field_path (Sequence[str]) – The field path.

Returns A field object.

Return type Field

Raises KeyError – If a repeated field is used in the non-terminal position in the path.

ident
Return the identifier data to be used in templates.

map
Return True if the given message is a map, False otherwise.

recursive_field_types
Return all composite fields used in this proto’s messages.

resource_path
If this message describes a resource, return the path to the resource. If there are multiple paths, returns the
first one.

with_context(*, collisions: FrozenSet[str], skip_fields: bool = False) →
gapic.schema.wrappers.MessageType

Return a derivative of this message with the provided context.

This method is used to address naming collisions. The returned MessageType object aliases module
names to avoid naming collisions in the file being written.

5.2. schema 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

API Client Generator for Python Documentation, Release latest

The skip_fields argument will omit applying the context to the underlying fields. This provides for
an “exit” in the case of circular references.

class gapic.schema.wrappers.Method(method_pb: google.protobuf.descriptor_pb2.MethodDescriptorProto,
input: gapic.schema.wrappers.MessageType, out-
put: gapic.schema.wrappers.MessageType, lro: Op-
tional[gapic.schema.wrappers.OperationInfo] = None,
retry: Optional[gapic.schema.wrappers.RetryInfo]
= None, timeout: Optional[float] = None, meta:
gapic.schema.metadata.Metadata = <factory>)

Description of a method (defined with the rpc keyword).

field_headers
Return the field headers defined for this method.

flattened_fields
Return the signature defined for this method.

grpc_stub_type
Return the type of gRPC stub to use.

idempotent
Return True if we know this method is idempotent, False otherwise.

Note: We are intentionally conservative here. It is far less bad to falsely believe an idempotent method is
non-idempotent than the converse.

ident
Return the identifier data to be used in templates.

legacy_flattened_fields
top level fields only, required fields first

Type Return the legacy flattening interface

paged_result_field
Return the response pagination field if the method is paginated.

void
Return True if this method has no return value, False otherwise.

with_context(*, collisions: FrozenSet[str])→ gapic.schema.wrappers.Method
Return a derivative of this method with the provided context.

This method is used to address naming collisions. The returned Method object aliases module names to
avoid naming collisions in the file being written.

class gapic.schema.wrappers.Oneof(oneof_pb: google.protobuf.descriptor_pb2.OneofDescriptorProto)
Description of a field.

class gapic.schema.wrappers.OperationInfo(response_type: gapic.schema.wrappers.MessageType,
metadata_type: gapic.schema.wrappers.MessageType)

Representation of long-running operation info.

with_context(*, collisions: FrozenSet[str])→ gapic.schema.wrappers.OperationInfo
Return a derivative of this OperationInfo with the provided context.

This method is used to address naming collisions. The returned OperationInfo object aliases module
names to avoid naming collisions in the file being written.

class gapic.schema.wrappers.PrimitiveType(meta: gapic.schema.metadata.Metadata,
python_type: Optional[type])

A representation of a Python primitive type.

30 Chapter 5. Reference

API Client Generator for Python Documentation, Release latest

classmethod build(primitive_type: Optional[type])
Return a PrimitiveType object for the given Python primitive type.

Parameters primitive_type (cls) – A Python primitive type, such as int or str. De-
spite not being a type, None is also accepted here.

Returns The instantiated PrimitiveType object.

Return type PrimitiveType

class gapic.schema.wrappers.PythonType(meta: gapic.schema.metadata.Metadata)
Wrapper class for Python types.

This exists for interface consistency, so that methods like Field.type() can return an object and the caller
can be confident that a name property will be present.

ident
Return the identifier to be used in templates.

class gapic.schema.wrappers.RetryInfo(max_attempts: int, initial_backoff:
float, max_backoff: float, back-
off_multiplier: float, retryable_exceptions:
FrozenSet[google.api_core.exceptions.GoogleAPICallError])

Representation of the method’s retry behavior.

class gapic.schema.wrappers.Service(service_pb: google.protobuf.descriptor_pb2.ServiceDescriptorProto,
methods: Mapping[str, gapic.schema.wrappers.Method],
meta: gapic.schema.metadata.Metadata = <factory>)

Description of a service (defined with the service keyword).

async_client_name
Returns the name of the generated AsyncIO client class

client_name
Returns the name of the generated client class

has_lro
Return whether the service has a long-running method.

has_pagers
Return whether the service has paged methods.

host
Return the hostname for this service, if specified.

Returns The hostname, with no protocol and no trailing /.

Return type str

module_name
Return the appropriate module name for this service.

Returns The service name, in snake case.

Return type str

names
Return a set of names used in this service.

This is used for detecting naming collisions in the module names used for imports.

oauth_scopes
Return a sequence of oauth scopes, if applicable.

Returns A sequence of OAuth scopes.

5.2. schema 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

API Client Generator for Python Documentation, Release latest

Return type Sequence[str]

resource_messages
Returns all the resource message types used in all request fields in the service.

with_context(*, collisions: FrozenSet[str])→ gapic.schema.wrappers.Service
Return a derivative of this service with the provided context.

This method is used to address naming collisions. The returned Service object aliases module names to
avoid naming collisions in the file being written.

5.3 utils

gapic.utils.case.to_snake_case(s: str)→ str
Convert any string to snake case.

This is provided to templates as the snake_case filter.

Parameters s (str) – The input string, provided in any sane case system.

Returns The string in snake case (and all lower-cased).

Return type str

gapic.utils.lines.sort_lines(text: str, dedupe: bool = True)→ str
Sort the individual lines of a block of text.

Parameters dedupe (bool) – Remove duplicate lines with the same text. Useful for dealing with
import statements in templates.

gapic.utils.lines.wrap(text: str, width: int, *, offset: int = None, indent: int = 0)→ str
Wrap the given string to the given width.

This uses textwrap.fill() under the hood, but provides useful offset functionality for Jinja templates.

This is provided to all templates as the wrap filter.

Parameters

• text (str) – The initial text string.

• width (int) – The width at which to wrap the text. If offset is provided, these are auto-
matically counted against this.

• offset (int) – The offset for the first line of text. This value is subtracted from width
for the first line only, and is intended to represent the vertical position of the first line as
already present in the template. Defaults to the value of indent.

• indent (int) – The number of spaces to indent all lines after the first one.

Returns The wrapped string.

Return type str

32 Chapter 5. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Python Module Index

g
gapic.generator, 21
gapic.generator.generator, 21
gapic.generator.options, 22
gapic.schema, 22
gapic.schema.api, 22
gapic.schema.metadata, 25
gapic.schema.naming, 26
gapic.schema.wrappers, 28
gapic.utils.case, 32
gapic.utils.lines, 32

33

API Client Generator for Python Documentation, Release latest

34 Python Module Index

Index

A
Address (class in gapic.schema.metadata), 25
API (class in gapic.schema.api), 22
async_client_name

(gapic.schema.wrappers.Service attribute),
31

B
build() (gapic.generator.options.Options class

method), 22
build() (gapic.schema.api.API class method), 23
build() (gapic.schema.api.Proto class method), 24
build() (gapic.schema.naming.Naming static method),

26
build() (gapic.schema.wrappers.PrimitiveType class

method), 30

C
child() (gapic.schema.metadata.Address method), 25
client_name (gapic.schema.wrappers.Service at-

tribute), 31
CommonResource (class in gapic.schema.wrappers),

28

D
disambiguate() (gapic.schema.api.Proto method),

24
doc (gapic.schema.metadata.Metadata attribute), 26

E
enums (gapic.schema.api.API attribute), 23
enums (gapic.schema.api.Proto attribute), 24
EnumType (class in gapic.schema.wrappers), 28
EnumValueType (class in gapic.schema.wrappers), 28

F
Field (class in gapic.schema.wrappers), 28
field_headers (gapic.schema.wrappers.Method at-

tribute), 30

FieldIdentifier (class in gapic.schema.metadata),
26

flattened_fields (gapic.schema.wrappers.Method
attribute), 30

G
gapic.generator (module), 21
gapic.generator.generator (module), 21
gapic.generator.options (module), 22
gapic.schema (module), 22
gapic.schema.api (module), 22
gapic.schema.metadata (module), 25
gapic.schema.naming (module), 26
gapic.schema.wrappers (module), 28
gapic.utils.case (module), 32
gapic.utils.lines (module), 32
Generator (class in gapic.generator.generator), 21
get_field() (gapic.schema.wrappers.MessageType

method), 29
get_response() (gapic.generator.generator.Generator

method), 21
grpc_stub_type (gapic.schema.wrappers.Method

attribute), 30

H
has_lro (gapic.schema.wrappers.Service attribute), 31
has_pagers (gapic.schema.wrappers.Service at-

tribute), 31
host (gapic.schema.wrappers.Service attribute), 31

I
idempotent (gapic.schema.wrappers.Method at-

tribute), 30
ident (gapic.schema.wrappers.EnumType attribute), 28
ident (gapic.schema.wrappers.Field attribute), 28
ident (gapic.schema.wrappers.MessageType attribute),

29
ident (gapic.schema.wrappers.Method attribute), 30
ident (gapic.schema.wrappers.PythonType attribute),

31

35

API Client Generator for Python Documentation, Release latest

inner_mock() (gapic.schema.wrappers.Field
method), 28

is_primitive (gapic.schema.wrappers.Field at-
tribute), 28

L
legacy_flattened_fields

(gapic.schema.wrappers.Method attribute),
30

long_name (gapic.schema.naming.Naming attribute),
27

M
map (gapic.schema.wrappers.Field attribute), 28
map (gapic.schema.wrappers.MessageType attribute), 29
messages (gapic.schema.api.API attribute), 23
messages (gapic.schema.api.Proto attribute), 24
MessageType (class in gapic.schema.wrappers), 29
Metadata (class in gapic.schema.metadata), 26
Method (class in gapic.schema.wrappers), 30
module_alias (gapic.schema.metadata.Address at-

tribute), 25
module_name (gapic.schema.api.Proto attribute), 24
module_name (gapic.schema.naming.Naming at-

tribute), 27
module_name (gapic.schema.wrappers.Service at-

tribute), 31
module_namespace (gapic.schema.naming.Naming

attribute), 27

N
name (gapic.schema.wrappers.Field attribute), 28
names (gapic.schema.api.Proto attribute), 24
names (gapic.schema.wrappers.Service attribute), 31
namespace_packages

(gapic.schema.naming.Naming attribute),
27

Naming (class in gapic.schema.naming), 26
NewNaming (class in gapic.schema.naming), 27

O
oauth_scopes (gapic.schema.wrappers.Service at-

tribute), 31
OldNaming (class in gapic.schema.naming), 27
Oneof (class in gapic.schema.wrappers), 30
OperationInfo (class in gapic.schema.wrappers), 30
Options (class in gapic.generator.options), 22

P
paged_result_field

(gapic.schema.wrappers.Method attribute),
30

PrimitiveType (class in gapic.schema.wrappers), 30

Proto (class in gapic.schema.api), 23
proto (gapic.schema.metadata.Address attribute), 25
proto_package (gapic.schema.metadata.Address at-

tribute), 25
proto_type (gapic.schema.wrappers.Field attribute),

28
protos (gapic.schema.api.API attribute), 23
python_import (gapic.schema.metadata.Address at-

tribute), 25
python_modules (gapic.schema.api.Proto attribute),

24
PythonType (class in gapic.schema.wrappers), 31

R
recursive_field_types

(gapic.schema.wrappers.MessageType at-
tribute), 29

rel() (gapic.schema.metadata.Address method), 25
repeated (gapic.schema.wrappers.Field attribute), 28
required (gapic.schema.wrappers.Field attribute), 29
resolve() (gapic.schema.metadata.Address method),

26
resource_messages

(gapic.schema.wrappers.Service attribute),
32

resource_path (gapic.schema.wrappers.MessageType
attribute), 29

RetryInfo (class in gapic.schema.wrappers), 31

S
Service (class in gapic.schema.wrappers), 31
services (gapic.schema.api.API attribute), 23
sort_lines() (in module gapic.utils.lines), 32
sphinx (gapic.schema.metadata.Address attribute), 26
subpackage (gapic.schema.metadata.Address at-

tribute), 26
subpackages (gapic.schema.api.API attribute), 23

T
to_snake_case() (in module gapic.utils.case), 32
top_level_enums (gapic.schema.api.API attribute),

23
top_level_messages (gapic.schema.api.API

attribute), 23
type (gapic.schema.wrappers.Field attribute), 29

V
versioned_module_name

(gapic.schema.naming.Naming attribute),
27

versioned_module_name
(gapic.schema.naming.NewNaming attribute),
27

36 Index

API Client Generator for Python Documentation, Release latest

versioned_module_name
(gapic.schema.naming.OldNaming attribute),
27

void (gapic.schema.wrappers.Method attribute), 30

W
warehouse_package_name

(gapic.schema.naming.Naming attribute),
27

with_context() (gapic.schema.metadata.Address
method), 26

with_context() (gapic.schema.metadata.Metadata
method), 26

with_context() (gapic.schema.wrappers.EnumType
method), 28

with_context() (gapic.schema.wrappers.Field
method), 29

with_context() (gapic.schema.wrappers.MessageType
method), 29

with_context() (gapic.schema.wrappers.Method
method), 30

with_context() (gapic.schema.wrappers.OperationInfo
method), 30

with_context() (gapic.schema.wrappers.Service
method), 32

wrap() (in module gapic.utils.lines), 32

Index 37

	Getting Started
	Docker Image
	Local Installation
	Bazel Build

	How Code Generation Works
	The protoc contract
	Entry Point
	Parse
	Translation
	Exit Point

	Templates
	Jinja
	Locating Templates
	Context (Variables)
	Filters
	Custom templates

	Features and Limitations
	Reference
	generator
	schema
	utils

	Python Module Index
	Index

